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Optimization of a Conventional 
Glycosylation Analytical Method Using 

Machine Learning and Experimental Design

Abstract 

G
lycosylation is one of the most 
common post-translational modi-
fications in mammalian-expressed 
biologics, and is considered to 

be a critical quality attribute of therapeutic 
glycoproteins. Due to its biological relevance, 
physiochemical assessment on the glycosyla-
tion profile is always important to the success 
of a drug development initiative. This article 
describes the combination of experimental 
design and machine learning techniques applied 
to characterize and optimize a conventional, 
non-derivatized glycoprofiling method on 
glycans derived from a human immunoglob-
ulin using high-performance anion exchange 
chromatography with pulsed amperometric 
detection (HPAEC-PAD). Two independent 
experimental designs, a 16-run definitive 
screening design (DSD) and a 28-run central 
composite design (CCD), were incorporated 
with a machine learning technique known as 
“self-validating ensemble modeling (SVEM)” 
and used to build predictive models for four 
chromatographic responses. We show that the 
predictive models created using SVEM on the 
DSD data reliably predicted the behavior of the 
chosen responses when applied to CCD valida-
tion data. This demonstrates that the DSD is 
an efficient alternative to the larger, traditional 
CCD in which the combination of experimental 
design and machine learning can effectively 
characterize and optimize analytical methods.

Introduction

Glycosylation is a common post-translational modification 
in a glycoprotein produced by mammalian cell expression. 
It is commonly thought that glycosylation structures 
impact drug product quality in the areas of safety, efficacy, 
stability, and immunogenicity.[1] Glycosylation is a complex 
biosynthesis process dependent on many factors that result 
in structural variations of a glycoprotein. The formation of 
various glycoforms (glycosylation variants) is controlled by a 
combination of enzymatic activities and regulation processes 
of glycosyltransferases and glycohydrolases that utilize 
monosaccharide substrates of structural variation, but close 
chemical similarity. Moreover, these enzymatic pathways are 
influenced by their expression levels, subcellular localization, 
as well as the glycoprotein production’s processes and 
conditions. Consequently, glycosylation is a non-template-
driven and highly process-specific biosynthesis process 
that may lead to considerable possible combinations of 
heterogeneous glycoforms of different glycan sizes.

Due to the profound contributions of therapeutic glyco-
proteins to current and future drug markets[2], and their 
complexity and structural diversity of glycans, controlling 
protein glycosylation is yet another important measure in a 
product lifecycle that can assure product quality. However, 
achieving consistent glycosylation profiles and reliable 
structural analysis for drug development still remains a 
challenge. To date, a non-mass spectrometric analytical 
platform using high-performance anion exchange chroma-
tography with pulsed amperometric detection (HPAEC-PAD) 
has been widely used.[3] The applications of HPAEC-PAD 
are described in three USP general chapters for the analysis 
of unlabeled glycans or monosaccharides.[4-6] The method 
has demonstrated excellent coverage of N-glycan species, 
and the peak assignment is identified by either spiking or 
retention time comparison with glycan standards. Moreover, 
the HPAEC-PAD method has been routinely used to analyze 
neutral and sialylated N-glycans of monoclonal antibodies.[7] 

In this article, a procedure of glycoprofiling assess-
ment on glycans derived from a human immunoglobulin, 
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featuring a simple non-derivatized analytical procedure 
of HPAEC-PAD integrated with design of experiment 
(DOE), was demonstrated using two experimental designs, 
a definitive screening design (DSD) and a central composite 
design (CCD). The DOE constitutes a large class of efficient, 
information-centric data collection structures for scientific 
inquiry. For a given set of experimental factors of size K 
and associated levels, one can create a design to estimate a 
set (possibly large) of potential experimental effects with 
a relatively small number of trials (runs).  

DSDs were developed by Jones and Nachtsheim[8] and 
have become popular in biopharma due to the relatively 
small number of trials required to estimate experimental 
effects.[9] For process characterization and optimization, 
an empirical “full quadratic” (FQ) model is utilized[10] or 
a larger and more complex variant of the FQ we refer to 
as the “partial cubic” (PC)[11] (also known as the “interac-
tion”) model is employed. The FQ model includes all main 
effects (first-order terms), all quadratic effects (second-
order terms), and two-way interaction effects (cross-product 
terms). Experimental designs capable of estimating terms 
in the FQ or PC models are often referred to as “response 
surface designs” (RSD). The CCD is a well-known example 
of an RSD. The smaller DSD is a very efficient RSD 
(compared to the CCD) in terms of number of runs, as 
DSD is capable of estimating both two-way interaction and 
quadratic terms. Since the DSD is relatively new, it was 
decided to independently perform a DSD plus a CCD to 
validate and compare each design’s effectiveness in glyco-
profiling. Both the experimental designs and subsequent 
analyses were performed with JMP® statistical software 
(SAS Institute, Inc.). 

In summary, the results demonstrated that both DSD 
(16 trials) and CCD (28 trials) experiments resulted in the 
same predictive models and conclusions where, in this case 
study, the number of experimental runs used for DSD were 
only 60% of those for CCD.

Materials
Analytical, reagent-grade chemicals and water puri-

fied using the Nanopure™ system (Thermo Scientific) to 
18 MΩcm (or above) were used. Mobile phases were prepared 
from sodium acetate (Sigma S7545) and sodium hydroxide 
(J.T. Baker 3727). The in-house glucose ladder was prepared 
(non-derivatized) from a partial acidic hydrolysis of dextran 
(Sigma D9260). Glycans were derived from RNase B (Sigma 
R7884) and a purified human immunoglobulin G (IgG) 
(Sigma I4506). Briefly, PNGase F (Sigma P7367) digestion 
was performed following standard procedures to release 
N-glycans and high mannose glycans. All glycan analyses, 
the glucose ladder, released N-glycans of a human IgG, and 
released high mannose glycans of RNase B, were performed 
on a HPAEC-PAD (Thermo Scientific) system.  

Methods

High-Performance Anion-Exchange 
Chromatography with Pulsed Amperometric 
Detection

The Thermo Scientific Dionex™ CarboPac™ PA100 
(2×250 mm) column with a 2×50 mm guard column was 
used (maintained at 30°C). Waveform A was applied to 
the electrochemical detector for glycan analysis. Detection 
was carried out by pulsed amperometry with a gold elec-
trode and Ag/AgCl reference electrode. The glycans were 
eluted with gradients of sodium acetate (NaOAc) in sodium 
hydroxide (NaOH) at a flow rate of 0.25 mL/min. A partial-
loop mode of  “5 µL injection with a 3 µL cut volume” was 
used. The Chromeleon™ data system (Thermo Scientific) 
provided necessary integration.

HPAEC-PAD Mobile Phases
•	 A: 500 mM NaOAc 
•	 B: 200 mM NaOH with 10 mM NaOAc
•	 C: Deionized water 

Method gradient for a standard run was 60 min at: 
•	T = 0 min, 2% A, 40% B, and 58% C 

(% C was calculated as the remaining % of A and B) 
•	T = 12 min, linear Gradient_01 

(1.25 mM NaOAc/min) to reach final 5% A and 
constant 40 % B 

•	T = 24 min, linear Gradient_02 
(2.085 mM NaOAc/min) to reach final 10% A and 
constant 40% B

•	T = 42 min, linear Gradient_03 
(5.555 mM NaOAc/min) to final 30% A and 
constant 40% B 

Equilibration to next initial condition was applied during: 
•	T = 42.1–60 min

Design of Experiment for Glycoprofiling
JMP statistical software was used for experimental 

designs and subsequent analyses. Optimization of the glyco-
profiling method was performed on four responses using 
DOEs on five factors of three levels. Two DOEs, DSD and 
CCD, consisted of 16 and 28 trials respectively, and were 
performed with JMP 14.2 (or JMP Pro 14) software. The 
SVEM analyses of the experimental data were performed 
using the JMP Pro 15 program.

Results and Discussion

Glycoprofiling Approach Integrated 
with Experimental Design

The utilization of DOE in analytical method development 
has become an upward trend under the quality by design 
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(QbD) paradigm.[12,13] In this study, DOE was applied to 
characterize and optimize the HPAEC-PAD method for 
direct analysis of glycan without sample derivatization.[7] 
In general, glycans are separated on the column and each 
individual glycan is assigned in terms of the retention time. 
To achieve a reliable structural analysis that supports phys-
iochemical assessment of a proposed glycoprotein, a good 
peak resolution is critical. Moreover, optimizing DOE 
studies of multiple runs requires a significant amount of 
glycan sample released from a drug. Instead, this glyco-
profiling procedure includes a surrogate sample, a glucose 
ladder, in place of a glycan sample in the DOE runs. 

The glycan peaks are expressed in terms of relative reten-
tion time (RRT). RRTs are expressed as glucose units (GUs) 
aligned with glucose oligomer peaks of an external glucose 
ladder (e.g., GU=1 for glucose, GU=2 for glucose dimer, 
and so on). Any glycan peak can be expressed as a GU, 
whereby the peak located between two GUs is calculated 
as a fraction of GU, assuming a linear interpolation. In 
fact, a labeled GU library was applied to reduce exper-
imental variation and give high reproducible GU values 
for the assignment of 2-aminobenzamide (2-AB) labeled 
N-linked glycans.[14] Moreover, GU values of an external 
malto-oligosaccharide ladder had been used to assign peaks 
of non-derivatized galacto-oligosaccharides.[15] 

Typically, a glycoprotein is treated with PNGase F to 
release glycans in which GU values are assigned to peaks 
according to an external glucose ladder. The glucose ladder 
serves as both a surrogate sample and a system suitability 
in the glycoprofiling method. Subsequent optimization 
DOE studies are performed using the surrogate sample (the 
glucose ladder) with selected DOE factors and responses 
of interest. Predictive models are chosen for each response. 
Consequently, the analytical method is optimized with all 
responses of interest. In the case study, a human IgG is 
used. Figure 1 shows an overlay of the representative IgG 
unlabeled glycans with the glucose ladder. Prior to the case 
study, a good precision of peak retention times (GUs) for 
the major glycans of IgG (A–F in Figure 1) and the high 
mannose glycoforms of RNase B was demonstrated (data 
not shown). Hence, the glucose ladder is deemed to be a 
suitable surrogate sample that can reliably represent the 
glycans released from a glycoprotein.

 In the study, the DSD had 16 trials, including three addi-
tional replicate center points, and the CCD had 28 trials, 
including four replicate center points. The DSD was used 
as a training set for empirical model development, and 
the CCD was used as a validation set to test the accuracy 
of the DSD-based models. Table 1 contains the details of 
the experimental (five chromatographic) factors each and 
levels (three) for both the DSD and CCD. For each run in 
the experiments, four peak characteristics of retention time 
(RT), resolution (Resol), peak area, and tailing factor were 
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TABLE 1. DOE levels for HPAEC-PAD method.

DOE Factor
(level)

Concentration (mM)
Low Middle High

Initial NaOAc Concentration 3 14 25

Initial NaOH Concentration 60 80 100

DOE Factor
(level)

Method Gradient (mM/min)
Low Middle High

Linear Gradient_01 (0–12 min) 0.415 1.250 2.085

Linear Gradient_02 (12–24 min) 1.250 2.085 2.915

Linear Gradient_03 (24–42 min) 4.720 5.555 6.390

FIGURE 1. Glycoprofile assignment of a human IgG. 

tracked to evaluate the desirable method performance for 
each of eleven glycans, G01 to G11, where “G#” denotes a 
peak corresponding to “GU#” as shown in Figure 1. Since 
there are 44 potential responses to analyze, it was decided 
to select four representative responses for discussion in 
this article. The four responses chosen for the purpose of 
glycoprofiling method characterization and optimization 
are the retention time for peak G03 (RT_G03), the resolu-
tion of peaks between G03–G04 (Resol_G03), G05–G06 
(Resol_G05), and G10–G11 (Resol_G10). Retention time 
for G03 is targeted for 8.5 min. The goal for Resol_G03 
and Resol_G05, corresponding to the region of neutral 
glycans (elute before the peak of G06), is to maximize reso-
lution. The goal for Resol_G10, corresponding to the region 
of charge glycans (charged sialylated and highly charged 
glycans are expected to elute after the peak of G08 and G11, 
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respectively) is also to be maximized. Moreover, the peak 
shapes of G04 and G05 tend to be relatively broad and less 
symmetric compared to those of early and late eluted peaks, 
but the actual shapes are dependent upon experimental 
conditions. When assessing the method performance of 
tailing factor, G04 or G05 (or both) are representative of the 
worst-case. Hence, tailing factor was monitored to remain 
within the range of 0.8–1.2 based on the standard require-
ment of USP tailing, but not formally analyzed.

Strategy for Analysis of the Experimental Data
The goal of the analyses is to find settings of the exper-

imental factors that optimize the performance of the four 
responses selected for the glycoprofiling. In the optimi-
zation process with experimental data, it is essential to 
estimate an empirical model that accurately predicts future 
method performance. We simply refer to these as “predictive 
models.” If an empirical model cannot accurately predict 
future performance, then optimized factor settings based 
on the experimental results will not accurately characterize 
future performance. The optimized results are not useful 
in this case. With regard to assessing the future accuracy 
of a predictive model, in machine and deep learning, the 
data are partitioned into a training set used to estimate the 
model and a separate validation or test set used to determine 
the predictive capability of that estimated model. Predictive 
models that accurately and precisely predict the responses 
in the validation set are preferred; we say they generalize. 
In the present work, the DSD is defined as the training set 
and is used to estimate predictive models for the four chosen 
responses. Meanwhile, the CCD serves as a validation set 
used to evaluate the generalizability of the DSD-based 
predictive models. If the predictive models validate on the 
CCD data, then this indicates that the smaller DSD design 
effectively captured the relationships between the responses 
and the experimental factors, demonstrating that the DSD 
is an efficient alternative to the larger CCD.

Predictive model building is the primary focus of 
machine learning and deep learning while traditional 
statistical modeling, with an emphasis on hypothesis 
tests of model components, is more focused on explana-
tion or attribution.[16,17] Unfortunately, explanatory models 
tend to predict poorly compared to predictive models.[16] 
Explanatory models are not constructed to predict and there-
fore, are usually not generalizable where they predict poorly 
on new data. For the glycoprofiling data, we use machine 
learning methods to build predictive models (reference[18] 
provides a discussion of common machine learning methods 
used to build predictive models) on the DSD data, validate 
the models on the CCD data, and subsequently, use the 
validated models to optimize the HPAEC-PAD glycopro-
filing method.

Commonly used predictive model-building algorithms 

are unstable, a challenge not well-recognized by scientists.[19] 
Small perturbations in the response values (e.g., the response 
noise changes slightly) result in substantial changes in the 
models selected by the algorithm. Therefore, considerable 
variation in prediction performance exists among selected 
models. In fact, a predictive model generated by a single 
pass through a selection algorithm is in part an artifact of 
the noise in the response. Thus, considerable predictive 
model uncertainty exists. 

A solution to the instability problem[19] is to perform a 
set of predictive model-building simulation trials of some 
size, possibly thousands of iterations. On each simulation 
trial, the original responses are perturbed by new random 
noise values and a predictive model is selected. Thousands 
of predictive models so obtained are then averaged together 
to create an average (ensemble) predictive model. Ensemble 
modeling is commonly used in machine learning[20] in part, 
to overcome the instability issue. Ramsey et al.[21] and 
Lemkus et al.[22] have shown that the ensemble approach to 
predictive model-building results in more stable models and 
superior predictive performance as compared to traditional 
methods based on a single model-building pass through 
the data. This strategy[21, 22] is known as “self-validating 
ensemble-modeling (SVEM).” The SVEM method was used 
in the current work to fit predictive models to each of the 
four responses in the HPAEC-PAD experiment. However, 
a full discussion of SVEM is beyond the scope of this paper.

Analysis of the HPAEC-PAD Experimental Data
Although the SVEM algorithm was used to fit predic-

tive models, the analyst must first define the model. As 
discussed earlier, two candidate models for optimization 
tasks are the FQ (equation 1) and PC (equation 2):

The FQ model includes main effects, and all two-way inter-
action and quadratic effects to account for curvature in the 
response behavior. The larger PC model builds upon the 
FQ model by adding in all possible linear-by-quadratic and 
quadratic-by-quadratic interaction terms. The FQ is often 
insufficient to model the complex kinetics found in chemical 
and biological systems.[11] The addition of the linear-by-
quadratic effects to the PC model provides more flexibility 
to accommodate complex kinetic behavior. Similarly, 
the PC model is expected to accommodate complicated 

Equation 1

Equation 2
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FIGURE 2. Interaction graph of  
Resol_G10 vs Initial NaOAc and Initial NaOH. 

performance behavior observed in analytical procedures.
Figure 2 displays an interaction graph for Resol_G10 vs 

Initial NaOAc and Initial NaOH. Notice that the curvature 
in the relationship between Resol_G10 and Initial NaOAc 
changes with the levels of Initial NaOH. We say that the 
quadratic effect of Initial NaOAc interacts with the linear 
effect of Initial NaOH. The FQ model cannot adapt to linear-
by-quadratic interaction behavior. However, the PC model 
does fit linear-by-quadratic interactions and has more flex-
ibility to fit response surface models where the underlying 
kinetics are complex. There are scenarios where linear-by-
quadratic interactive behavior is commonly observed.

Using the SVEM algorithm, an ensemble predictive 
model was fit to each of the four chosen responses. Both 
the FQ and PC models were fit to the responses, and the 
model with the smallest prediction error on the CCD vali-
dation data was selected as the final model. All models fit 
using SVEM were based on the forward selection method.[18] 
Table 2 summarizes the predictive modeling results. As 
shown, the root average square error (RASE) column is 
the standard deviation of prediction error for the CCD vali-
dation data, and a smaller error indicates a more accurate 
prediction. The R2 validation column is the observed R2 for 
the predictive model applied to the CCD validation data and 
provides a measure of goodness of fit for the model. The 
percent relative standard deviation (% RSD) column is based 
on dividing the RASE by the average of each response. 
Overall, the noise or variation in each response appears 
to be consistent (neither increasing nor decreasing) over 
the range of observed values, so for comparison purposes 
it was decided to calculate % RSD at the average of each 
response. The % RSD value for Resol_G10, based on the FQ 
model (bottom row in the table), is not meaningful because 
no relationship exists between the observed values and the 
model predictions, R2 = 0.065.

A common machine learning method to visualize the 
quality of the fit for a predictive model is an actual by 
predicted plot. The actual observed responses are plotted 
on the Y-axis and the corresponding predicted values are 
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plotted on the X-axis. If the predictive model is a good fit 
to the observed values, then the plot should exhibit a linear 
trend with a slope of ~1.0 and an intercept ~ 0.0. Figure 3 
displays the actual by predicted plots of the four responses in 
Table 2. In all four cases, the observed slopes and intercepts 
are not significantly different from 1.0 and 0.0 respectively. 
This provides evidence that the four predictive models, 
estimated using the DSD training data, provide accurate 
prediction of the corresponding responses in the CCD vali-
dation data. Notice too that in the actual by predicted plots, 
the level of variation or noise in the responses is consistent 
over the response ranges. This provides visual evidence that 
the level of noise or variation in the responses is constant 
over the entire range of observed values. 

In order to illustrate the instability problem with tradi-
tional model fitting, which makes a single pass through a 
model-fitting algorithm, three predictive models were fit 
using the SVEM algorithm, but only a single pass through 

TABLE 2. Predictive modeling results for four responses using SVEM.

Response* Model Number of Predictors RASE Validation R2 Validation % RSD Validation**

RT_G03 PC† 26 0.186 0.996 2.80

Resol_G03 PC 26 0.721 0.925 12.67

Resol_G05 PC 40 0.406 0.893 7.01

Resol_G10 PC 40 0.246 0.778 7.08

Resol_G10 FQ 20 0.478 0.065 13.76

*SVEM was used with N =1,000 models in each ensemble.
**Based on RASE divided by the average of each response.
†RT_G03 cannot be impacted by Gradient_02 and Gradient_03 due to shorter retention time.
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FIGURE 3. Actual by predicted plots for the four responses: 
(A) RT_03; (B) Resol_G03; (C) Resol_G05; and (D) Resol_G10.
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the forward selection algorithm was used. The exercise was 
limited to the Resol_G10 response, and Table 3 contains 
the summary of the predictive modeling results for the 
CCD validation data. The first row in Table 3 presents 
the results for the best SVEM model from Table 2, and 
the other three rows are the results from three individual 
models fit to the DSD data using a single pass through the 
forward selection method. The first row in Table 3 shows 
that the original SVEM model, based upon an ensemble 
average of 1,000 models, performs best in terms of 
RASE, R2, and slope. Models PC(1) and PC(2) exhibit 

very poor prediction performance while PC(3) performs 
well, although inferior to the original SVEM model in 
the first row. Unfortunately in practice, if one generates a 
single predictive model from a single pass through a model- 
fitting algorithm (e.g., forward selection), then that fitted 
model may perform very poorly since substantial model 
uncertainty exists. The SVEM algorithm overcomes the 
uncertainty by fitting many models and using the ensemble 
average as the final predictive model. In the end, the results 
presented in Table 3 demonstrate the effectiveness of the 
SVEM algorithm.

TABLE 3. Validation results for four models fit to Resol_G10 using the DSD data.

Response Model SVEM Iterations RASE Validation R2 Validation Slope*

Resol_G10 PC 1,000 0.246 0.778 0.939

Resol_G10 PC(1) 1 0.431 0.285 0.499

Resol_G10 PC(2) 1 0.470 0.165 1.356

Resol_G10 PC(3) 1 0.272 0.720 0.814
*Slope of the actual by predicted plot for each model.
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Optimization
Once acceptable predictive models have been estimated 

for each of the responses of interest, those models can be 
subsequently used for characterization and optimization of 
the method in study. Characterization and optimization are 
demonstrably about prediction where one is attempting to 
predict future performance of the procedure. We use the 
four predictive models identified in Table 2 to simultane-
ously optimize the HPAEC-PAD method. Recall that the 
goal is to hit a target of 8.5 min for RT_G03, and the reso-
lutions of Resol_G03, Resol_G05, and Resol_G10 are to be 
maximized. Optimization by employing empirical models, 
predictive models in the present case, is typically performed 
using desirability functions.[23] Desirability functions are 
mappings of each original response to a dimensionless 0.00–
1.00 scale. The actual functional form depends upon the 
goal of the optimization. The most desirable level would be 
1.00 with 0.00 being a least desirable level of performance. 
The set of responses are then optimized on the dimension-
less desirability scale, removing any potential impacts on 
optimization of very different measurement scales among 

the responses. Optimization using desirability functions as 
the responses and the predictive models for each response 
search, the design space for settings of the experimental 
factors, provides the overall most desirable levels for all 
responses. The desirability optimization method is imple-
mented in the Prediction Profiler application of the JMP 
software.

We illustrate desirability optimization using JMP and 
the four predictive models applied to the CCD validation 
data. Figure 4 displays the optimized results using the JMP 
Prediction Profiler. The contours in each cell depict the 
nature of the relationship between each experimental factor 
and the responses. The two highlighted cells in Figure 4 
show the relationships between RT_G03 and Resol_G10 
to Initial NaOH. Notice that Initial NaOH has a negative 
and nonlinear effect on RT_G03 while Initial NaOH has a 
positive and nonlinear impact on Resol_G10. In other words, 
increasing Initial NaOH results in reduced retention time 
for G03 while increasing the resolution of Resol_G10. The 
optimization routine searches for settings of the experi-
mental factors that predict the most desirable levels that 

FIGURE 4. Optimization results for the four responses using desirability functions.
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TABLE 4. Simultaneously optimized settings of experimental factors for all responses.

Factor Initial NaOAc Initial NaOH Gradient_01 Gradient_02 Gradient_03

Setting 6.013 95 0.848 1.25 4.72

TABLE 5. Optimized predicted values for four responses.

Response RT_G03 Resol_G03 Resol_G05 Resol_G10

Predicted Value 8.78 9.57 8.04 3.68

FIGURE 5. Assessment of 
experimental factor importance.

can be achieved across all four responses. Table 4 lists the 
optimized settings for each of the experimental factors. 
Table 5 lists the optimized predicted values for each of the 
four responses.

Variable Importance
QbD strategies require that the importance of the process 

factors, in terms of long-term process stability, must be 
assessed (i.e., which factors require tight control). Assessing 
variable importance is also a prediction problem. In the long 
term, one is required to predict the impact of the process or 
method factors (parameters). The problem is complicated 
by the reality that interactions among the factors account 
for a large portion of the observed variation in responses. 
However, using our predictive models, which include 
interaction terms, makes it possible to assess the overall 
impact of the factors using 
those predictive models. 
The JMP Prediction Profiler 
contains a variable impor-
tance assessment tool based 
on the work of Sobol.[24] (The 
considerable mathematical 
detail will not be discussed 
in this article.)

Figure 5 contains the 
JMP Variable Importance 
analysis results computed 
over all four responses on the 
CCD validation data. This 
assessment is based upon 
the four predictive models 
and therefore captures all the 
impacts of each factor, both 
individually and in combi-
nation with other factors. 
Based upon the report in 
Figure 5, the overall impact 
of Initial NaOAc explains 
87.5% of total variation 
across all four responses. 

Clearly, Initial NaOAc is an important variable that must be 
tightly controlled to maintain stable and acceptable perfor-
mance of the HPAEC-PAD method.

Conclusions
Implementing quality by design (QbD) principles to the 

analytical procedure development is no different from those 
used in the drug development process. The same goals are to 
identify critical attributes and parameters, define the control 
strategy, and establish robustness in the method or the process. 
Certainly, these goals are realized throughout the procedure 
and the product lifecycles. In this article, we described a 
glycoprofiling procedure that integrates DSD into a simple, 
conventional chromatography method, HPAEC-PAD, using 
the QbD approach. This procedure also uses an inexpensive 
glucose ladder to achieve two-folds of benefits, serving as a 
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sample surrogate to optimize glycoprofiling and as a system 
suitability testing sample for the analytical procedure. The 
SVEM machine learning technique was applied to the DSD 
data to build predictive models for four chromatographic 

responses. The results were verified using a traditional exper-
imental design (CCD) in which the same predictive models 
and conclusions were obtained, demonstrating that the DSD 
is an efficient alternative to the larger CCD.
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